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We introduce a general technique for making statistical inference
from clustering tools applied to gene expression microarray data.
The approach utilizes an analysis of variance model to achieve
normalization and estimate differential expression of genes across
multiple conditions. Statistical inference is based on the application
of a randomization technique, bootstrapping. Bootstrapping has
previously been used to obtain confidence intervals for estimates
of differential expression for individual genes. Here we apply
bootstrapping to assess the stability of results from a cluster
analysis. We illustrate the technique with a publicly available data
set and draw conclusions about the reliability of clustering results
in light of variation in the data. The bootstrapping procedure relies
on experimental replication. We discuss the implications of repli-
cation and good design in microarray experiments.

NA microarrays (1) are a revolutionary high-throughput

tool for the study of gene expression. The ability to simul-
taneously study thousands of genes under a multitude of con-
ditions presents a huge challenge to comprehend and interpret
the resulting mass of data. Early, pioneering research with cDNA
microarrays that demonstrated the promise of the technology
also influenced the direction of research to answer this challenge
(2, 3). Specifically, an assortment of clustering techniques have
been developed and applied to identify groups of genes with
similar patterns of expression (3-6). A great deal of effort has
gone into identifying the best clustering techniques for microar-
ray data. However, another question that is at least as important
has received less attention: How does one make statistical
inference based on the results of clustering? The input into any
clustering technique is a set of estimates of relative gene
expression from a microarray experiment. In current practice,
these estimates are taken to be precisely known quantities,
ignoring the fact that every estimate has a margin of error.
Consider two genes that cluster together. Are the patterns of
expression for these genes sufficiently similar beyond any rea-
sonable doubts raised by the uncertainty of the estimates, or
could these genes have clustered together by chance? We
propose a bootstrap method to assess the reliability of clustering
results in a statistically quantifiable manner. The bootstrap is
widely accepted as a method to assess the reliability of recon-
structed phylogenetic trees (7), which is the primary inspiration
for this work. We first describe our bootstrap methodology in
generality, and then illustrate the implementation on the clus-
tering technique used by Chu et al. (2).

By “clustering” genes, we mean organizing genes into groups,
which may be predefined or data-driven, or organizing genes into
a structure to represent some measure of distance between them.
In a cluster analysis we start with raw data y, which we use to
estimate the relative expression r of the genes among the mRNA
samples. We use 7 to estimate a clustering C. (The ~ notation
denotes estimated quantities.) Schematically, we might write the
process as

y -7 — C.

www.pnas.org/cgi/doi/10.1073/pnas.161273698

The specifics of the transformation from 7 to € and the structure
of C depend on the clustering method. The simplest kind of
clustering (case 1) assigns genes to prespecified groups. This is
the case for our example below, where genes are clustered by
calculating the correlation of an observed profile with a collec-
tion of fixed target profiles. Thus, the group “centers” are known
and there is no ambiguity about group labels. A second situation
(case 2) occurs when we divide genes into groups but the group
identities (and perhaps even the number of groups) are not
defined in advance. This is similar to the first case, but the group
labels are not well defined. The third kind of clustering we wish
to consider is hierarchical clustering (case 3) (3). In this case,
genes are organized into a bifurcating tree structure. The
bootstrapping procedure proposed here applies equally well to
any of these cases, and possibly others. Differences between the
cases arise in how one evaluates and summarizes the bootstrap-
ping results. We explore this issue further in Discussion.

Our methodology exists within the following paradigm: If we
knew the precise differences in gene expression among the
samples, we would have the “true” clustering C. In other words,
if we knew r we could simply calculate C. Instead, we have
estimates of relative gene expression # with which we produce C
as an estimate of C. Just as one wants error bars on any univariate
parameter estimate, one would like to know how much confi-
dence to put on the clustering resulting from microarray data.
How much is C like C? We stress that our interest is not in
evaluating the merits of any particular clustering algorithm.
Rather, we present a method for assessing how much confidence
one should have in clustering results in light of the error in
estimation.

Experimental design determines how well one can estimate a
quantity of interest and whether it is possible to assess the error
in the estimate (8). Insufficient replication may lead to a
situation where one can estimate the quantities of interest, but
lacks the information to assess the accuracy of those estimates.
Increased replication achieves more accurate estimation and also
may improve one’s ability to examine assumptions of the anal-
ysis. Limitations imposed by experimental design will arise in our
example, and we will revisit this issue in Discussion.

Statistical Framework

The basis of this methodology is a statistical model for microar-
ray data. We use analysis of variance (ANOVA) models, devel-
oped in ref. 9, to both estimate relative gene expression and to
account for other sources of variation in microarray data. The
exact form of the ANOVA model depends on the particular data
set. In other words, one should evaluate each data set individ-
ually to determine which sources of variation are present, and
construct the model accordingly. A typical ANOVA model is
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yijkg =M +Al + DJ + (AD)IJ + Gg +
(AG)iy + (VG)yy + (DG)jg + €ijkgs [1]

where yjji, is the measured intensity from array i, dye j, variety
k, and gene g on an appropriate scale (typically the log scale). We
use the generic term “variety” to refer to the mRNA samples
under study. For example, the varieties may be treatment and
control samples, cancer and normal cells, or time points of a
biological process as in the example we will discuss later. The
terms A, D, and AD account for all effects that are not
gene-specific. The gene effects G, capture the average levels of
expression for genes and the array-by-gene interactions (AG)j,
capture differences due to varying sizes of spots on arrays. The
dye-by-gene interactions (DG)j, represent gene-specific dye ef-
fects. Although we did not originally anticipate such effects, they
have appeared repeatedly. None of these effects are of biological
interest, but amount to a normalization of the data for ancillary
sources of variation. The effects of interest are the interactions
between genes and varieties, (V'G)y,. These terms capture dif-
ferences from overall averages that are attributable to the
specific combination of variety k£ and gene g. Differences among
these variety-by-gene interactions comprise our estimates of
relative gene expression 7. In other words, to estimate the relative
expression of gene g in varieties 1 and 2, one should estimate
(VG)1g — (VG)2e. We assume the error terms siji, are indepen-
dent with mean 0 and variance ¢ but do not make any other
distributional assumption.

Bootstrap Clustering

In a typical application of clustering, an investigator will estimate
the relative expression of genes by using a ratio method (3), filter
out uninformative genes, and cluster the remaining genes with
a chosen algorithm. Our approach differs in two important
respects. First, we estimate relative expression by using ANOVA
instead of ratios. ANOVA models allow us to estimate relative
expression while simultaneously accounting for other sources of
variation. In addition, residuals from the fitted ANOVA model
provide an empirical estimate of the error distribution—the
“noise” in the data. This estimated error distribution serves as
the basis of the technique we introduce here, which is to add a
bootstrapping step (10) to evaluate clustering results.

Bootstrapping cluster analysis begins with creating a number
of simulated datasets based on the statistical model. If 1 is the
appropriate model, then bootstrap-simulated data sets y* are
created

(AG)ig + (VG)kg + (DG)Jg + S?Ekga [2]
where a * over a term means the estimate from the original
model fit. The &jj, are drawn with replacement from the
studentized residuals of the original model fit. Studentized
residuals (11) are the fitted residual rescaled to have the same
variance as the corresponding theoretical distribution. One
repeats the clustering procedure on each simulated data set:

The result is a clustering of the original data € accompanied
by a collection of bootstrap clusterings {C*}, which can be
regarded as a sample of clusterings that are close to C in space
of all possible clustering. What constitutes “close” is determined
by the accuracy of the estimates of relative expression 7 and the
nature of the clustering method. The accuracy of 7 as an estimate
of r is a function of the the level of noise in the data and the
experimental design (8, 16). When accuracy is high, the boot-
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Table 1. Analysis of variance for sporulation data

Source SS df MS
Array 6,616.33 6 1,102.72
Dye 187.57 1 187.57
Array X Dye 92.33 6 15.39
Gene 48,329.71 6,117 7.90
VG,AG 22,907.16 73,404 0.31
Residual 89.18 6,117 0.0146

Adjusted Total 78,222.28 85,651

SS, sum of squares; df, degrees of freedom; MS, mean square.

strap estimates of relative expression will be more like the
original estimates and the bootstrap clusterings will be more like
the original clustering.

Example

We illustrate bootstrap clustering with the data from the exper-
iment by Chu ef al. (2). In this experiment, spotted cDNA
microarrays containing 97% of the known genes of Saccharo-
myces cerevisiae (yeast) were used to study gene expression
during meiosis and spore formation. Yeast cells were transferred
to a nitrogen-deficient medium to induce sporulation and
mRNA samples were taken at seven time points: 0, 30 min, and
2,5,7,9,and 12 h. The “varieties” in this experiment are the time
points. For each time point, the scientists prepared a “red”-
labeled ¢cDNA pool. In addition, they prepared a “green’-
labeled cDNA pool from the time-0 sample. Seven microarrays
were used in the study, one for each of the seven time points.
Each array was probed with the green-labeled sample mixed with
one of the seven red-labeled samples. In effect, time 0 serves as
a reference for all of the samples. This experimental setup has
some peculiar consequences for analysis that we will discuss
later.

The data set contains four measurements for each spot: green
signal, green background, red signal, and red background. As
their estimate of relative expression of a gene at time k compared
with time 0, Chu et al. use the background-corrected ratio (red
signal — red background)/(green signal — green background)
from the array containing red-labeled cDNA from time k and
green-labeled cDNA from time 0. ANOVA modeling of the
non-background-corrected data showed systematic trends in the
residuals, pointing to model inadequacy. We investigated several
ANOVA models for the log background-corrected data, and
found the data supported the model

yijkg = M +A| + DJ + (AD)U + Gg +

(AG)ig + (VG T+ Eijkes [31]
fori=1,...,7arrays;j = 1,2dyes; k = 0, ..., 6 varieties (time
points); and g = 1, ..., 6,118 genes. Table 1 gives the analysis

of variance. We note that it is possible to fit the larger model (1),
which includes dye-by-gene effects, to this data. However, with
this experimental design, 0 residual degrees of freedom remain
so it is not possible to evaluate the adequacy of the model. On
the other hand, with Model 2 and this experimental design, all
of the nonzero residuals come from the time 0 vs. time 0
self-comparison array. This is a highly undesirable situation,
because one is forced to assume that this array is representative
of all of the others. The residual plot showed no systematic trend
or evidence against our assumption of constant error variance,
although there was insufficient data to consider testing for
gene-specific variance because there are only two residuals per
gene.

Chu et al. are interested in genes induced during sporulation.
Their filter excludes genes that do not show a minimum increase
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Fig. 1. Temporal profiles for select genes. The solid line gives the profile
estimated by using Model 3. Error bars around the profiles are 99% bootstrap

confidence intervals. The dotted line gives the temporal profile estimated
with log ratios, rescaled to have the same standard deviation as the solid line.

relative to time 0. Their clustering procedure matches genes to
seven temporal patterns or “profiles” of induced transcription of
special interest. Each profile is defined by a “prototypical”
expression pattern calculated by averaging a hand-picked set of
3-8 genes per profile. The clustering method matches genes to
these profiles based on the correlation between the 7-vector of
log ratios and the profile prototype. A gene is matched to a
profile if its correlation with that profile is larger than the with
the other profiles and also above a threshold. Of about 1,000
genes that pass their filter, about 450 are assigned to one of the
seven profiles.

We modify the Chu et al. clustering to incorporate bootstrap-
ping and assess the reliability of the results. First, we estimate the
difference in gene expression for gene g at time & compared with
time 0 with (VG)xe — (VG)og. In addition, we construct 99%
bootstrap confidence intervals for these estimates (9, 10). We
chose bootstrap confidence intervals to avoid making distribu-
tional assumptions about the error. Fig. 1 shows estimated
profiles for two genes with 99% bootstrap confidence intervals
based on 10,000 bootstrap simulations.

Next, we created model profiles based on the same represen-
tative genes identified by Chu et al. (Fig. 2). (Two genes, MRD1
and NAB4, for profile 3 and two genes, KNR4 and EXO1, for
profile 4 could not be found in the publicly available data file. We
constructed profiles 3 and 4 with the remaining genes.) As our
filter, we exclude any gene that does not satisfy the following
criteria: for at least one time point k not zero (VGig — (VG)og
> 0 and the 99% confidence interval for (VG)xgs — (VG)og does
not contain 0. Thus we mimic the filter used by Chu et al., but
with a statistically based criterion. For each gene g passing the
filter, we calculate the correlation coefficient ry, for that gene
and thep = 1, ..., 7 profiles. Gene g is assigned to profile p if
rep > 0.9 and ryp, is the largest of {rg1, . . ., rg7}. From columns
a and b in Table 2, we see that the number of genes clustering
to each profile is somewhat larger here than for Chu et al., except
for profile 2 (Early I). This can be attributed to the fact that our

0 2 5 7 9 12

Fig. 2.
because clustering is based on correlations.
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Table 2. Number of genes matching to each profile

Clustering method

Profile a b C d

1 52 65 3 8
2 61 51 7 11
3 45 74 3 11
4 95 151 12 27
5 158 241 86 120
6 61 145 17 36
7 5 15 2 6

(a) Chu et al. clustering, (b) modified clustering with no reliability measure,
(c) modified clustering requiring 95% stability, and (d) modified clustering
requiring 80% stability. Column d is included because a 95% stability require-
ment is somewhat arbitrary.

filter is not as stringent as that in ref. 2 and passes almost twice
as many genes, close to 2,000.

The next step is bootstrapping to assess the reliability of the
clusters. We create 499 bootstrap data sets yjj, and, for each
simulated data set, we construct a bootstrap temporal pattern
based on the estimates (VG)iz — (VG)ig for each gene. We
repeat the filtering and clustering steps with these bootstrap
estimates. The same filter is used in each bootstrap iteration (i.e.,
we do not repeat the first level of bootstrapping). Similarly, the
profile “prototypes” are not recalculated. The result is 500
clusterings, 1 based on the actual data and 499 bootstrap-
simulated clusterings. The match of a gene to a profile is declared
“95% stable” if it occurs in the analysis of the actual data and
in at least 95% of the bootstrap clusterings.

Column c of Table 2 shows the numbers of 95% stable matches
per profile. Fig. 3 plots the profiles of the 95%-stable genes.
When we reduce the criterion to 80% stability, the number of
stable genes in each cluster remains many fewer than the number
of nominal matches. For the most part, the 95%-stable genes are
a subset of the Chu et al. genes. The exceptions are seven stable
genes that matched to profiles 5, 6, or 7 but did not match to any
profile by Chu et al. One of these, YPL280W, is in Fig. 1. Like
YPL280W, the other six genes have fairly flat profiles, so the
difference is likely due to the less stringent filter.

Bootstrapping draws attention to some attributes of this
particular clustering procedure. When profiles are themselves
highly correlated, one can expect that genes with high correla-
tion to one profile will also have high correlation to the other.
Eight of 21 pairs of profiles have correlation at least 0.75 (see
Table 3 and Figs. 5 and 6, which are published as supplemental
data on the PNAS web site, www.pnas.org). The largest corre-
lation is 0.95 for profiles 4 and 5. Fifty-eight percent of genes that
are nominal matches to profile 4 match to profile 5 in more than
5% of bootstrap iterations. Twenty-seven percent of genes that

0 2 5 7 9 12

The seven model profiles used for clustering. The profiles are rescaled to a have standard deviation of 1, which does not affect the clustering results
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Fig. 3.

Ninety-five-percent-stable genes for the seven model profiles based on 500 bootstrap clusterings. The plotted profiles have been rescaled to have a

standard deviation of 1. See Fig. 5, an expanded version of this figure, which is published as supplemental data on the PNAS web site.

are nominal matches to profile 5 match to profile 4 in more than
5% of bootstrap clusterings. Thus, many genes fail to be 95%
stable matches to profile 4 simply because of the presence of
profile 5, and vice versa. Given the level of noise in the data, these
two profiles are too similar to be readily distinguished.

Discussion

The goal of bootstrap clustering is to make statistical inference
about a discrete structure, the clustering C, which we estimate
with C. The estimated clustering C has some unknown sampling
distribution around the true clustering C. Bootstrapping uses the
sampling distribution of C* around C to infer the sampling
distribution of € around C. Efron, Halloran, and Holmes (13)
discuss bootstrap inference for such discrete objects. In discuss-
ing our methodology we avoid the terms “confidence” and
“significance” because they are technically incorrect in this
setting. However, the arguments in ref. 13 for the appropriate-
ness of bootstrapping to make inferences from reconstructed
phylogenetic trees (7) apply here. The “stability” of a gene—the
percent of bootstrap clusterings in which it matches to the same
cluster—is a reasonable first approximation to the confidence of
the match.

We chose the Chu et al. example to demonstrate bootstrap
clustering because of its simplicity. The bootstrapping procedure
does not change with other clustering methods, but additional
complexity may arise in the step of summarizing and evaluating
the results. With a case-2 clustering method, group labels are not
well defined across bootstrap clusterings C*. Several approaches
are possible. We suggest looking at pairs of genes that cluster
together in € and counting the frequency with which such pairs
cluster together in the C*. One hopes that stable clusters of genes
emerge where each pair of members clusters together reliably.

Case 3, hierarchical clustering, is exactly the situation ad-
dressed by Felsenstein (7) in his original work on bootstrapping
phylogenies. Following the terminology in phylogenetics, we
refer to a group of genes descending from a common node as a
clade. To summarize bootstrapping results, we count the number
of occurrences of each clade in the observed tree 7 in the
bootstrap sample of trees {7%}. The resulting frequency is placed
on the dendrogram 7 at the node that marks the clade. These
frequencies provide a way to gauge the approximate significance
of each component of the tree (13).

Our approach for bootstrapping procedure differs from
Felsenstein’s (7) in the way bootstrap data sets y* are generated.
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With phylogenetic data, one resamples columns from a data set
under the assumption that the columns are independent, iden-
tically distributed (i.i.d.) realizations of a random process. With
microarray data, there is no such i.i.d. structure. Instead, we use
a structural model to estimate systematic sources of variation and
separate those from the noise, which we assume is i.i.d. given the
correct structural model.

In the example, we did not see any evidence in the residuals
against our assumption of constant error variance. In principle,
heteroscedasticity does not present a limitation to the method-
ology. If each gene has its own error distribution, one could
incorporate this in the resampling scheme by using only the
residuals for gene g to produce yjy,. However, this will only be
possible when the experimental design provides enough repli-
cation. Intermediate solutions are available for bootstrapping in
the presence of intensity-dependent heteroscedasticity (12).

The computational burden of bootstrapping is an obvious
concern. In the example, computation was less than one minute
per bootstrap data set on a 400-MHz personal computer with
interpreted code (MATLAB). We chose 500 for the bootstrap
sample size to put the computational time on the scale of
“overnight.” Clearly, computing time could be reduced with
more computing power and efficient, compiled code. The pri-
mary limit to the practicality of bootstrapping will be the
computational intensity of the clustering algorithm.

Bittner et al. (14) use a different approach for evaluating
cluster results. They add normally distributed noise with mean 0
directly to the log-ratios and recluster the results. This method
implicitly assumes that ratios are unbiased estimates of relative
expression. The technique in ref. 14 further assumes normally
distributed error, whereas we generally find error distributions to
be heavy-tailed. Furthermore, Bittner ef al. use an estimate of
variance that includes variation due to differential expression.
The advantage of our model-based approach is that it separates
systematic sources of variation from noise and uses an empirical
estimate of error, which is free of distributional assumptions.

It would be interesting to reanalyze the clustering in ref. 14 the
same way as the Chu et al. data, but this is not possible for two
reasons. First, the publicly available data provides only ratios, so
the information needed for ANOVA modeling is lost. More
fundamentally, the experiment in ref. 14 does not have even the
minimal replication of the Chu ef al. experiment. A model such
as 3 would be saturated and no estimate of the error distribution
would be possible. This situation highlights the importance of
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replication in microarray experiments, which has been noted in
several publications (9, 15, 16). Replication is a fundamental
principle of good experimental design and serves two purposes.
First, replication increases the precision of estimated quantities.
Second, and perhaps most important, it provides information
about the uncertainty of estimates (8). Only with an appropri-
ately designed experiment that includes replication can statisti-
cally valid conclusions be drawn (17).

In the yeast sporulation experiment that is reanalyzed here, a
kind of replication is achieved by making a self-comparison of
the time-0 sample. Although this is adequate for providing error
degrees of freedom, it is not an ideal situation. All of the nonzero
residuals from the ANOVA analysis come from the self-
comparison array—all other data points are fit exactly because
they are not replicated. If the self-comparison array is not typical
of the experiment as a whole, one can be misled in imputing the
same level of variation to the other arrays.

Although perhaps counterintuitive, it is possible to replicate
all samples without using additional arrays. For example, sam-
ples could be arranged in a loop as shown in Fig. 4, so that
samples from each time point appear on two arrays. Fitting
Model 1 with this design, residuals are obtained from every
array. In addition to the built-in replication, varieties (V) are
balanced with respect to dye (D). This balance has certain
advantages for the data analysis (16), although there is additional
cost associated with the number of labeling reactions required.
With the loop design, the variance of gene-specific differences in
time points depends on the relative position of the corresponding
samples in the loop. Because adjacent time points are estimated
most precisely, it is most efficient to estimate profiles by using
those comparisons rather than by using time 0 as a fixed
reference point. With the loop design, estimates of (VG)x+1,¢ —
(VG)x for adjacent time points have variance 85.7% as large as
estimates of (VG)xg — (VG)og with the design used by Chu et al.
This increased precision, balance among design factors, and the
fact that residuals are obtained from every array make this design
one alternative worthy of consideration.
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Fig. 4. An alternative experimental design for the sporulation study, rep-
resented as adirected graph. The boxes represent RNA samples and the arrows
represent microarrays. The tail of an arrow is, say, the “red”” dye and the head
of an arrow is the “’green’’ dye. Thus, the arrow from the time-0 sample to the
half-hour sample means to hybridize an array with red-labeled time-0 mRNA
and green-labeled mRNA from the half-hour sample. Such a design has
advantages over the plan used by Chu et al. in balance, precision of estimates,
and distribution of residuals.

In scientific experimentation, results depend on experimental
designs that yield precise estimates of quantities of interest, as
well as estimates of the precision achieved. Furthermore, the
design should produce data that allows the assumptions of
analysis to be verified. Microarray experiments are no exception.
Itis certainly an interesting exercise to run a clustering algorithm
on gene expression data. However, without an assessment of the
reliability of the clusters one cannot make valid inferences about
similarly behaving genes. Whatever clustering algorithm is cho-
sen, it is imperative to assess whether the results are statistically
reliable relative to the level of noise in the data. Bootstrapping
is a useful tool to accomplish this.
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